
Carnegie Mellon 
Software Engineering Institute 

Mining Existing Assets for 
Software Product Lines 

John Bergey 
Liam O'Brien 
Dennis Smith 

May 2000 

Product Line Practice initiative 

Unlimited distribution subject to the copyright 

Technical Note 
CMU/SEI-2000-TN-008 

^^niaspBfsisD^ 

20000607 042 



The Software Engineering Institute is a federally funded research and development center sponsored by the U.S. 
Department of Defense. 

Copyright 2000 by Carnegie Mellon University. 

NO WARRANTY 

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY 
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, 
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED 
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF 
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. 

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is 
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works. 

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external 
and commercial use should be addressed to the SEI Licensing Agent. 

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie 
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development 
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the 
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the 
copyright license under the clause at 52.227-7013. 

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site 
(http://www.sei.cmu.edu/publications/pubweb.html). 

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra- 
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of 
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders. 

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed, 
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the 
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian 
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are 
available to all students. 

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone 
(412)268-2056. 

Obtain general information about Carnegie Mellon University by calling (412) 268-2000. 



Contents 

1 Introduction 1 

2 Product Lines and Mining of Assets 3 

3 Information Gathering and Decision-Making 5 
3.1 Preliminary Information Gathering: General 

Baseline Data 5 
3.2 Decision Making: Options Analysis for 

Reengineering (OAR) 6 

4 Activities in Mining of Assets 10 
4.1 Technical Understanding of Assets 10 
4.2 Rehabilitation of Software Assets 11 

5 Architecture Reconstruction 13 
5.1 Role of Reconstruction 13 
5.2 Dali Workbench 14 
5.3 Related Architecture Reconstruction Efforts 16 

6 Summary and Conclusions 18 

References 19 

Appendix: Definition of Key Concepts 21 

CMU/SEI-2000-TN-008 



CMU/SEI-2000-TN-008 



List of Figures 

Figure 1: Horseshoe Model for Integrating Reengineering 
and Software Architecture 6 

Figure 2: Overview of the Dali Workbench and the 
Various Phases 15 

CMU/SEI-2000-TN-008 



iv CMU/SEI-2000-TN-008 



Abstract 

Mining of existing assets offers an organization the potential to leverage all, or part, of its 
cumulative system investments, and thus represents a critical practice area in implementing 
a software product line. However, there are significant risks in achieving success because 
of the poorly documented and maintained state of many existing systems and the fact that 
many systems were initially developed for different paradigms than current distributed, 

Web-oriented, object-oriented approaches. 

Four basic steps are required to successfully mine assets: 1) preliminary information 
gathering, 2) making decisions on whether to mine assets and which type of overall strategy 
to use, 3) obtaining detailed technical understanding of existing software assets, and 4) 

rehabilitation of assets. 

This note outlines basic considerations for each of these steps. It outlines typical 
information to collect before an analysis. It then outlines a model for making decisions on 
mining legacy assets, and discusses the technical understanding of assets and the 
rehabilitation of assets. 

Because of its importance as a strategy for product lines, architecture reconstruction is 
discussed, as it is supported by an automated tool set known as the Dali workbench. 

CMU/SEI-2000-TN-008 



vi CMU/SEI-2000-TN-008 



1    Introduction 

Few systems, whether individual systems or product lines, start out as "green field" 
development efforts. Instead, applications are usually built as extensions of legacy systems. 
Often the term "mining existing assets" simply refers to finding useful legacy software from 
an organization's existing inventory of software applications, and reengineering it to fit 
within a new application. However, current best reengineering practice suggests that such a 
view misses the big picture behind software evolution and mining of existing assets. For 
example, in a recent review of reverse engineering, Müller suggests a need to focus reverse 
engineering at the more significant levels of the software architecture and the business 
processes as a precursor to understanding how, and if, existing assets can be leveraged 
[Müller 00]. 

Two situations where software understanding at higher levels of abstraction is especially 
important include migration to a modern architecture and the development of a product line. 
In some cases, it will still be necessary to mine assets at lower levels of abstraction, but at a 
minimum it is necessary to understand the architectural and functional features of the 
system. 

Although many legacy systems do not have up to date documentation and other artifacts, 
when these are available they can serve as potential candidates for mining. Relevant assets 
can include architecture descriptions, domain models, design and usage documentation, test 
programs, test data and documentation, interface specifications, tools, code, and processes. 
In addition it is important to understand architecture and design tradeoffs, engineering 
constraints, and application domain knowledge. 

Overall, four basic steps are required to successfully mine assets: 1) preliminary information 
gathering, 2) making decisions on whether to mine assets and which type of overall strategy 
to use, 3) performing analyses to obtain a detailed technical understanding of existing 
software components and their relationships and interfaces, and 4) carrying out the 
rehabilitation of selected assets. These overall steps are outlined to provide a starting point 
for organizations considering the mining of assets. References are provided for more detailed 
information. Before describing each of these steps (Sections 3 and 4), Section 2 introduces 
salient issues and factors to consider when mining assets for product lines. Section 3 outlines 
preliminary information to gather. It then discusses decision making for mining of assets and 
outlines a model for making decisions on technical strategies. Section 4 outlines the major 
activities that are required for the technical understanding of assets at the component level, 
their relationships and interfaces. It then discusses the rehabilitation of assets. 

CMU/SEI-2000-TN-008 



Architecture reconstruction is a technical strategy that is particularly relevant to enabling the 
mining of assets for product lines. Because of its importance, Section 5 provides an overview 

of architecture reconstruction as supported by an automated tool set, the Dali workbench. 

Section 6 provides a summary and conclusions. 

Since this note focuses on mining existing assets for product lines, the Appendix provides 
definitions of our use of the term product line and other key architecture and product line 

concepts. 

CMU/SEI-2000-TN-008 



2    Product Lines and Mining of Assets 

Product lines are based on a software architecture, which describes and captures key 
"change" or predicted variability points for future evolution, and which forms the backbone 
for building software intensive systems. The architecture represents the earliest set of design 
decisions for a system, and thus represents an irreversible foundation for future 
developments of the system. Quality needs to be built in at the software architecture level 
and it can't be appended at implementation time. Individual products within a product line 
will need to exhibit variability in function, and the capability to be re-targeted to different 
functional goals. As a result it is even more important to have an appropriate software 

architecture for a software product line than for individual systems. 

While mining assets can often provide a cost effective means of leveraging an organization's 
existing system capabilities, mined assets must have properties that are consistent with the 
corporate drivers of the product line architecture. The assets need to fit into an architecture 
that will be long-lived and that is designed to satisfy carefully developed functional goals 

and well thought out non-functional quality attributes. 

Moreover, product lines focus on strategic, large-grained reuse of the mined assets. Because 
the mining of assets is resource intensive, the most desirable assets for mining are those that 
make up large patterns of interoperation in the legacy architecture and that clearly satisfy 
specific requirements in the new product line architecture. Thus, reuse is not restricted to 
single components, but rather to entire assemblies of components and their pre-defined and 
supported interactions or patterns. However, in some cases, individual components can be 
mined as core assets if they fit cleanly within the product line architecture and offer 

significant leverage across the products in the product line. 

The primary drivers that motivate large-scale reuse for a product line are schedule, cost and 
quality. An initial rough estimate of the cost (and schedule) of carrying out mining should be 
developed to determine whether to go down the road of mining at all. In some cases mining 

of assets may not be practical or worth carrying out. 

The inclusion of extracted software components or assemblies of components is 
economically feasible when a project that uses those components can be completed at lower 
cost, meet architectural quality requirements, and produce equal or greater functionality than 
creating similar assets from scratch. Any calculation of reuse cost should include the total 
cost of asset use over the lifetime of the product or products, and not just the cost of 
mining/restoring a particular set of assets. In practice, improvements on just one of the scales 
of schedule, cost and time may produce a significant tactical advantage. For example, if 
mining and restoration gain time, but result in slightly reduced functionality (relative to 

CMU/SEI-2000-TN-008 



building from scratch), the case for mining could be a strong one if time to market were a 

primary driver for the effort. 

The qualities that make assets desirable are different for product line usage as opposed to 
single system usage. When mining assets for single systems, it is critical that the assets 
perform specific functions very well. For product lines it is important for the asset base to be 
able to accommodate extensive variability in function, while still being able to fulfill quality 
attributes. Quality attributes such as maintainability and portability may assume even greater 
importance in a product line because these attributes affect the asset's total cost of ownership 
across a family of products. For example, a bank may have a batch application that calculates 
the projected value of an investment account given certain dates and portfolio allocations. 

Porting the code to a new family of interactive systems requires consideration of 
performance and security issues and the architectural "fit" with the new interactive system in 

addition to the functional logic. 

In analyzing an asset's potential role for use in a product line, factors to consider include 

• its usefulness for immediate products (i.e., as start-up assets) 

• its application for potential future products (i.e., as long-lived assets) 

• the amount of effort required to make the component's interface compatible with the 
product line architecture 

• the potential (and nature) of future changes to the asset based on anticipated evolution 
requirements for the product line architecture 

CMU/SEI-2000-TN-008 



3    Information Gathering and Decision-Making 

Given the constraints that the software architecture places on potential product line assets, it 
is important to have a disciplined approach to decision making. The first step in making 
informed decisions is to gather preliminary information to create a baseline of knowledge 

about the characteristics of the product line and the organization's current assets. This step 
will help to create an understanding of where mined assets may fit into a product line 
architecture and which types of software assets represent viable candidates for mining. Once 
the baseline is established, decisions on basic strategies for mining assets can be made. 

Section 3.1 outlines the general baseline data that needs to be gathered prior to the effort of 
mining assets. Section 3.2 discusses decision making and mining strategies from the 
perspective of Options Analysis for Reengineering (OAR), a model to guide decisions on 

overall strategies for mining assets. 

3.1    Preliminary Information Gathering: General Baseline Data 

A first step in the mining of assets involves establishing a baseline to provide the general 
background information for making decisions on mining assets. This information includes 
the following: 

description of the product line architecture, the scope of the product line, and potential 
changes 

experience of the organization with mining and reengineering 

catalog of available corporate and legacy system assets and documentation for the assets 

needs of the product line for potential mined assets (start-up and long term) 

identification of potential options for fitting mined assets into the product line 
architecture 

a preliminary estimate (to be verified later during a more complete analysis) of which 
assets are mining candidates requiring black box changes (primarily changes to 
interfaces) and which are candidates requiring white box changes (significant changes to 
underlying software) 

• maintenance history of the assets under consideration 

• resources available for the mining activity 

• availability of the people who currently maintain the assets of interest 

• preliminary feasibility estimates (to be verified subsequently with more detailed 
analysis) of cost, functionality, and quality attribute tradeoffs for mining versus building 
from scratch 

CMU/SEI-2000-TN-008 5 



3.2   Decision Making: Options Analysis for Reengineering (OAR) 

Once the baseline data has been collected, a set of assets may emerge as potential candidates 
for mining for a product line. Mining of assets is a complex activity with many potential 
paths. Options Analysis for Reengineering (OAR) [Bergey 99] enables practitioners to 
determine the basic strategies and technical options that are applicable for different types of 

problems. 

OAR provides help in making two types of fundamental decisions when mining assets. 

These are the following: 

1. determining the level of analysis that is appropriate to a problem, such as the code, 
function, and architecture levels. In most cases when mining assets for product lines, the 
architectural level will need to be considered, at least to the extent of determining 
appropriate interfaces; however, it is possible that analysis at the code and function 
level will also be required 

2. determining the particular reengineering strategy that can best exploit the mining of 
existing assets 

The "Horseshoe" Model 

OAR uses the visual metaphor of a "horseshoe" to establish the context to address both of 
these types of decisions. As shown in Figure 1, this horseshoe model that is described by 
Woods integrates the code-level and architectural reengineering views of a software system 

[Woods 99]. 

Base 
Architecture 

Architecture 
Transformation Desired 

Architecture 

Architecture 
Recovery/ 
Conformance 

Architecture 
Representation 

Function-level 
Representation 

Code Structure 
Representation 

Source Text 
Representation 

Architecture 
Representation 

Function-level 
Representation 

Code Structure 
Representation 

Architecture- 
based 
Development 

Legacy 
Source 

New System 
Source 

Figure 1: Horseshoe Model for Integrating Reengineering and Software Architecture 

CMU/SEI-2000-TN-008 



Levels of Abstraction 

The horseshoe model can first be used to help in understanding and making decisions on the 
appropriate level of abstraction. The model represents data at the following three levels: 

• "Code-structure representation" includes source code and artifacts such as abstract 
syntax trees (ASTs) and flow graphs obtained through parsing and rote analytical 
operations. At the code-structure level, there are actually two sub-levels, represented in 
Figure 1. These are a) source text (or string-based) transformations and b) code structure 
transformations, such as those based on the abstract syntax tree. 

• "Function-level representation" describes the relationship between the programs 
functions (calls, for example), data (function and data relationships), and files (groupings 
of functions and data). 

• "Concept" level represents clusters of both function and code level artifacts that are 
assembled into subsystems of related architectural components or concepts. 

Choice of Appropriate Strategy for Mining Assets 

As we pointed out in Section 2, the most desirable assets for mining for product lines are 
represented by large assemblies of components and their pre-defined interactions and 
patterns. In many cases, though, individual components can be mined as core assets if they 
offer a clean fit within the product line architecture. When mining large assemblies of 
components, an organization will focus on understanding (or reconstructing) the architectural 
structure and interactions of the components. Types of strategies that support different types 
of goals for mining these kinds of assets are outlined in the next section, "Mining Large 
Grained Assets at the Architectural Level." When mining smaller components, the focus will 
be on understanding at the program level, and the types of strategies that are outlined in 
"Mining Smaller Grained Components" on page 8 will be more appropriate. 

Mining Large Grained Assets at the Architectural Level 

When large grained assets are mined at the architectural level, they are interpreted at a high 
level of abstraction with careful consideration of component relationships and interactions in 
order to maximize leverage in an evolved overall compositional structure. For this type of 
problem, three basic strategies (or combination of these strategies) can be selected, 
depending on the goals of the organization. These strategies, which are represented along the 
outside of Figure 1, are the following: 

1.    Architecture recovery and conformance goes up the left leg of the horseshoe. It is used 
when the original architecture has been eroded and there is a need to reconstruct the 
architecture of the existing system (e.g., use it as a baseline for a product line 
architecture). Architecture reconstruction extracts artifacts from the code, and 
constructs an extracted view of the system, consisting of a set of components and the 
relationships between them. The reconstructed architecture can be evaluated for its 
conformance to the as-designed architecture. It can also be evaluated with respect to a 
number of quality attributes such as performance, modifiability, security, or reliability. 

CMU/SEI-2000-TN-008 7 



Because of its importance for mining assets for product lines, architecture 
reconstruction and conformance is examined in more detail in Section 5. 

2. Architecture transformation goes across the top of the horseshoe. It is used when the 
goal is to migrate from an as-built (or an as-reconstructed) architecture to a desirable 
new architecture, such as when a current architecture doesn't fulfill certain quality 
attributes that are needed to meet goals of one or more products in a product line. The 
desired architecture is re-evaluated against the system's quality goals and subject to 
other programmatic and economic constraints. 

3. Architecture-based development (ABD) [Bass 99] goes down the right side of the 
horseshoe to instantiate the desired architecture. This approach is used when a new or 
updated product line architecture is needed. The legacy assets can represent either a 
starting point or a set of interconnected components that will fit into the new 
architecture. Designing an architecture for a product line or long-lived system is 
difficult because detailed requirements are not known in advance. The ABD method 
fulfills functional, quality, and business requirements at a level of abstraction that 
allows for the necessary variation when producing specific products. 

Mining Smaller Grained Components 

Although the mining of assets for product line systems will usually focus on large grained 
assets, there may be times when the mining of smaller grained assets is appropriate for 
insertion into the product line architecture. In these cases, shortcuts across the horseshoe, or 
combinations of these paths, may be appropriate. These "shortcut" paths can represent 
pragmatic choices based on organizational or technological constraints, such as the 
availability of reengineering tools. They could also represent a realistic response to a defined 

goal. 

Shortcut paths across the horseshoe include the following: 

1. code level changes, where assets are identified and changed only at the code level to 
meet system needs. In addressing the Y2K problem, there was often not a need to 
change the underlying structure of the system or to add functionality. The most logical 
choice to address Y2K issues often involved simple manipulations of the source code. 

2. function level changes, where assets are adapted for different functional requirements. 
These changes often involve "white box" changes where the actual code structure of 
assets are changed to fit into a different design structure. 

3. architectural level changes, where assets retain some of the initial core functionality but 
need to have new types of interactions and fit new architectural patterns. In these cases, 
wrapping approaches are often used where the core functionality is retained and the 
interfaces are changed. For example, moving an application to a Web-based approach 
can often use self-contained existing components that have been "wrapped" to fit within 
the new architectural constraints of the Web. Several of these approaches are outlined in 
Section 4.2. 

In practice, many actual applications will use a combination of several paths, either going 
along the outside of the horseshoe, or across the horseshoe. In these cases the horseshoe 

CMU/SEI-2000-TN-008 



represents a useful model for making conscious decisions on the appropriate combination of 

paths to consider. 

CMU/SEI-2000-TN-008 



4   Activities in Mining of Assets 

The OAR approach outlined in Section 3 will guide an organization in deciding on an overall 
strategy. Once decisions on a particular strategy are made, the detailed work of mining of 
assets is undertaken. Although the specific tasks and activities will differ depending on the 
overall strategy and a lower level instantiated process for fulfilling the strategy, the detailed 

technical work can be broken down into 

1) technical understanding of software assets 

2) rehabilitation of assets 

Technical understanding of software assets, outlined in Section 4.1, provides an in-depth 
analysis of the software components, relationships and interfaces of the existing system. 
Rehabilitation of assets, outlined in Section 4.2, makes changes to existing assets to enable 
them to be of value to the product line. Emerging techniques for asset rehabilitation that 
involve wrapping approaches are outlined in "Software Asset Rehabilitation Approaches" on 

page 12. 

4.1   Technical Understanding of Assets 

Tilley [Tilley 98] lists three major activities in the technical understanding of assets.1 These 
activities represent ideal types that are always followed but where there are strong variations 
in the level of detail required. For example, when architecture reconstruction is required, the 
activities of technical understanding are detailed and time-consuming because every software 
component and relationship in the system needs to be analyzed. On the other hand, when 
assets are to be wrapped for insertion into a product line architecture, a much lower level of 
understanding is required because the primary focus is on the component interfaces. 

The major activities in technical understanding of assets are the following: 

1.    Detailed data collection gathers comprehensive information about the system and its 
software, components, and related artifacts. As pointed out above, the level of detail to 
be collected will vary depending on the strategy chosen. This activity often uses a 
combination of computer-aided tools and techniques, together with corporate 
knowledge and experience. The raw data from the existing system are used to identify a 
system's software artifacts and relationships. This software data collection activity is an 
essential first step for constructing and exploring higher-level abstractions. Techniques 
for data collection include system examination, document scanning, and experience 

l We start with Tilley's categorization and make minor modifications to fit the specific needs of 
mining assets for product lines. 

10 CMU/SEI-2000-TN-008 



capture. Sources of data gathering include compiler-based static analysis, natural 
language content analysis (from documentation and source code comments), and 
interviewing. 

2. Knowledge management is the capturing, organizing, understanding, and extending of 
past experiences, processes and individual know-how. Knowledge management is most 
typically approached by organizing the data in a model, such as a domain model, 
relational model, or an object model. 

3. Exploration involves analyzing the meaning of the captured data through a set of 
activities that includes navigation, analysis, and presentation. This activity of 
exploration is the key to increased comprehension because it facilitates the iterative 
refinement of hypotheses. The presentation of analysis results has traditionally taken the 
form of charts, tables, or graphs. Multimedia-enhanced computers introduce new ways 
of presenting this information. Flexible architecture visualization techniques and 
multiple views enable the engineer to recognize and appreciate patterns and motifs such 
as central, fringe, and isolated software components. 

4.2   Rehabilitation of Software Assets 

Once the software assets are understood at a sufficient level of detail, rehabilitation takes 
place. Large grained assets at the architectural level may require rehabilitation through the 
strategy of architecture transformation (for example, to fulfill different quality attributes). 
They may also represent a starting point for inserting a set of interconnected components 
into a new architecture developed through the strategy of architecture based development. 
Large grained software assets that are well structured, well documented and have been used 
effectively over long periods of time can sometimes be applied as core product line assets 
with little or no change. 

Smaller grained assets that will require only the interfaces to be changed, rather than large 
chunks of the underlying code or algorithms, can be wrapped to satisfy new interoperability 
requirements. In these cases, the tasks of technical understanding and rehabilitation will be 
relatively straightforward. On the other hand, software assets that don't satisfy these 
properties will require more detailed technical understanding and rehabilitation, and they 
may have higher maintenance costs over the long term. 

Usually, an asset will need to be changed to accommodate the constraints of the architecture. 
However, it is worth examining the effort required to make a minor change to the 
architecture. If this is done, it is critical to understand the implications of the architecture 
change for other components, and for future projected changes. 

Mined assets should not dictate the design or architecture of a new product development 
effort. Rather, they should be viewed as making up a resource pool that can be used in 
product development but which present unique opportunities and risks. 

CMU/SEI-2000-TN-008 11 



Software Asset Rehabilitation Approaches 

Comella-Dorda recently identified a set of rehabilitation approaches based on different forms 
of wrapping [Comella-Dorda 00]. Depending on the type of software asset and its potential 
use, a subset of these approaches can often be appropriate for rehabilitating assets. These 
approaches are most relevant when existing software components are mined for inclusion in 

a product line architecture. The set of approaches includes the following: 

• User interface modernization - makes the user interface of an asset more usable. One 
common technique is screen scraping, which wraps an old, text-based interface with a 
new graphical interface. 

• Data modernization, or data wrapping - enables the accessing of legacy data through 
different interfaces or protocols than those for which the data was initially designed. 
Examples of data modernization include 

a. database gateway, which translates between two or more data access protocols, 
thus permitting components to access databases using standard protocols (such as 
Sun's Java Database Connectivity (JDBC) or Microsoft's Open Database 
Connectivity (ODBC)), rather than vendor specific protocols 

b. XML™ integration which uses the Extensible Markup Language (XML) for data 
integration between applications; this solution is especially relevant for the 
automated exchange of information between systems from different organizations 

• Functional or logic modernization - encapsulates not only the legacy data, but also the 
business logic of a legacy system. Examples includes object-oriented wrapping, which 
translates the monolithic semantics of a procedural system to the richly structured 
semantics of an object-oriented system. 

12 CMU/SEI-2000-TN-008 



5    Architecture Reconstruction 

"Mining Large Grained Assets at the Architectural Level" on page 7 introduced architecture 
reconstruction as a strategy that can be used when the original architecture has been eroded 
or when a large set of interconnected components can potentially be inserted into a new 
architecture. The strategy of architecture reconstruction can be implemented through a 
number of different specific processes. Because of its importance for product line systems, a 
specific architecture reconstruction process with tool support from the Dali tool set is 
discussed in this section. We will outline the process and how it supports technical 
understanding and rehabilitation of assets. Further information about architecture 
reconstruction can also be obtained from O'Brien.2 

Architecture reconstruction uses existing system and software artifacts to reconstruct the 
architecture of an implemented system. Relative to the activities for the mining of assets 
outlined in Section 4, architecture reconstruction requires a detailed technical understanding 
of assets. This is accomplished through an analysis of the system using tool support to 
collect data, and build and aggregate various levels of abstraction to obtain an architecture 
representation of that system. There is extensive exploration of alternative hypotheses using 
a variety of alternative visual techniques. The mechanisms used in architecture 
reconstruction to obtain a detailed system understanding are discussed in Section 5.2. 

The reconstructed architecture may next require rehabilitation through the strategies of 
architecture transformation or architecture based development. For example, architecture 
transformation may be appropriate if the reconstructed architecture is viable but in need of 
some modifications to meet new quality attribute requirements. 

In some cases it may not be possible to generate a reasonable architectural representation. 
For example, a system may have no inherent architectural components as a result of 
inconsistent architectural decision making or inconsistent application of architectural 

decisions. 

5.1    Role of Reconstruction 

Architecture reconstruction typically results in an architectural representation that can: 

• be used for documenting the existing architecture 
• be used to check the conformance of the as-implemented architecture to the as-designed 

architecture 

2 O'Brien, L. & Kazman, R. Architecture Extraction Guidelines. Pittsburgh, PA.: Software 
Engineering Institute, Carnegie Mellon University, forthcoming. 

CMU/SEI-2000-TN-008 13 



• serve as a starting point for reengineering the system to a new desired architecture, 
through the strategy of architecture transformation 

• be used to identify components for establishing a product line approach 

If an organization does not have up-to-date documentation for its existing system, it is often 
possible to reconstruct the architecture of the system to provide current documentation. 
Using automated support the source units that make up architectural components and the 

links between them serve as the basis for building the documentation. 

In many cases the as-implemented architecture of a system will have drifted from the as- 

designed architecture. In such cases reconstructing the software architecture assists in 
checking conformance of the as-implemented architecture to the as-designed architecture. 

In other cases an organization may want to update and add functionality to the system. The 
as-implemented architecture is then reconstructed and used as the basis for transformation to 

a new as-desired architecture. 

When introducing a product line approach it is often beneficial to use existing architectural 
components in the product line. In these cases, architecture reconstruction can help to 
identify common components that can become core assets in the new product line 

architecture. 

5.2   Dali Workbench 

Architecture reconstruction is a complex set of tasks with a wide range of activities. Tool 
support using multiple tools for different tasks is often required. The diversity of tasks and 
different types of required tools has led to the concept of a workbench for supporting these 
activities. A workbench provides a lightweight integration framework so incorporating new 
tools does not have an unnecessary impact on existing tools or data. Moreover, the 
framework needs to be open, allowing for the easy integration of new tools. An example of 

such a workbench is Dali [Kazman 99]. 

Software architecture reconstruction using Dali has the following phases: 

view extraction 

database construction 

view fusion 

architecture reconstruction 

architecture analysis 

The phases are highly iterative. Figure 2 illustrates the tasks of architecture reconstruction as 
supported by Dali. An outline of each phase is provided in the following sections. 

14 CMU/SEI-2000-TN-008 



View Extraction 

Lexical Parsing Profiling ... 

Architecture 
Reconstruction 

Database 

Pattern Definition 
and Recognition 

Database 

>■ — 

Figure 2: Overview of the Dali Workbench and the Various Phases 

View Extraction 
View extraction analyzes existing design and implementation artifacts and constructs an 
extracted view of the system. A view comprises a set of elements (files, functions, variables, 
etc.) and a set of relationships (calls, contains, includes, etc.) among these elements. Views 
can be either static or dynamic. Static views are obtained by observing only the artifacts of 
the system, while dynamic views are obtained by observing the execution of the system. In 
many cases static and dynamic views can be fused. 

There are several different types of tools that support view extraction. Lexically based tools 
and parsers extract static views of the source code. Profiling, code coverage analysis and 
instrumentation generate dynamic views of the system. Tools that are designed to analyze 
design models, "makefiles" and executables can also be used to support extraction. 

Database Construction 

The extracted views are converted into the Dali format and stored in a relational database. 
SQL and Perl assist in the manipulation of the architectural views in the relational database 

and in providing reasoning capacities about these views. 

View Fusion 
View fusion is the process of defining and manipulating extracted views to create fused 

views. It reconciles and establishes connections between views. Different views provide 

complementary information. For example, if we have two views of a "function calls 

CMU/SEI-2000-TN-008 15 



function" relation in a system with dynamic binding, one view generated by carrying out a 
static analysis and the other obtained by generating a dynamic view, we can combine the 
information in both views. Neither of the two views may be complete in themselves, but the 

fused view would give us more complete information about the system. 

Architecture Reconstruction 

Architecture reconstruction has two main types of activities: 

1. visualization and interaction enables the user to interactively visualize, explore and 
manipulate views through hierarchically decomposed graphs 

2. pattern definition and recognition enables the definition and recognition of architectural 
patterns. Dali's architecture reconstruction facilities allow a user to construct more 
abstract views of a software system from more detailed ones by identifying aggregations 
of elements. Patterns are defined in Dali using a combination of SQL and Perl, and 
these patterns are stored in files. Users can selectively apply various patterns. 

Architecture Analysis 

During architecture analysis the conformance of the as-reconstructed architecture is 
evaluated relative to the as-designed architecture. As a starting point it is necessary to have 
the as-designed architecture from either the system documentation or the original 
developers. A representation of this architecture is entered into the Dali workbench using the 
visual presentation capabilities of Rigi. The representations of the two architectures in the 
Dali tool are exported from Dali to the RMTool [Murphy 95] where the conformance 

between the two architectures is analyzed. 

5.3   Related Architecture Reconstruction Efforts 

Several other efforts have been established in architecture analysis and reconstruction. 
Bowman, et al. [Bowman 99] outline a similar method for extracting architectural 
documentation from the code of an implemented system. In their example they used the 
Linux system. They analyze source code using cfx to obtain symbol information from the 
code and generate a set of relations between the symbols. They manually create a tree- 
structured decomposition of the Linux system into subsystems and assign the source files to 
these subsystems. They used the grok tool to determine relations between those subsystems 
and the ledit visualization tool is used to visualize the extracted system structure. Refinement 
of the resultant structure was carried out by moving source files between subsystems. 

Harris, et al. [Harris 95] outline a framework for architecture reconstruction using a 
combined bottom-up and a top-down approach. The framework consists of three 
components: the architecture representation, the source code recognition engine and 
supporting library of recognition queries, and a "Bird's Eye" program overview capability. 
The bottom-up analysis uses the bird's eye view to display file structure and file components 

of a system and to reorganize information into more meaningful clusters. The top-down 

16 CMU/SEI-2000-TN-008 



analysis uses particular architectural styles to define components that should be found in the 
software. Recognition queries are then run to determine if the expected components exist. 

CMU/SEI-2000-TN-008 17 



6    Summary and Conclusions 

Mining of existing assets represents a critical activity in implementing a software product 

line. However, there are significant risks involved because of the poor quality of many 

existing systems. 

When assets are mined for product lines, additional factors need to be considered. Product 

lines have the additional requirement that mined assets fit into a software architecture. For 
product lines, the ideal mined assets are strategic, large-grained assets to meet the needs of 

schedule, cost, and quality. In addition, quality attributes such as maintainability and 

suitability over time assume greater importance because they affect the asset's total cost over 
a range of products. While the general field of reengineering has established a certain 
amount of maturity, there has not been a codification of strategies and processes for the 

mining of assets for product lines. 

We have outlined four basic steps that are required to successfully mine assets: 

1. preliminary information gathering which gathers baseline data about the system and 
available resources 

2. decision-making on whether to mine assets and the type of overall strategy to use; a 
decision model, OAR offers a mechanism for making decisions on overall reengineering 
strategy 

3. technical understanding of existing software, which includes the activities of detailed 
data collection, knowledge management, and exploration 

4. rehabilitation of assets, through such strategies as architecture transformation at the 
architecture level, or through various wrapping approaches for components 

Because of its importance as a strategy for enabling the mining of assets for product lines, 
we discussed a specific process for architecture reconstruction, as supported by an automated 

tool set we call the Dali workbench. 

18 CMU/SEI-2000-TN-008 



References 

Bass 97 

Bass 99 

Bergey 99 

Bowman 99 

Clements 99 

Comella-Dorda 00 

Bass, L. Clements, P.; & Kazman, R. Software Architecture in 
Practice. New York: Addison-Wesley, 1997. 

Bass, L. & Kazman, R. Architecture-Based Development (CMU/SEI- 
99-TR-007, ADA366100). Pittsburgh, PA: Software Engineering 
Institute, Carnegie Mellon University, 1999. Available WWW: 
<URL: http ://w w w. sei .emu .edu/publications/documents/ 
99.reports/99tr007/99tr007abstract.html>. 

Bergey, J.; Smith, D.; Weiderman, N.; & Woods, S.N. Options 
Analysis for Reengineering (OAR): Issues and Conceptual Approach. 
(CMU/SEI-99-TN-014). Pittsburgh, PA: Software Engineering 
Institute, Carnegie Mellon University, October, 1999. Available 
WWW: <URL: http://www.sei.cmu.edu/publications/documents/ 
99.reports/99tn014/99tn014abstract.html>. 

Bowman, T.; Holt, R.C.; & Brewster, N.V. "Linux as a Case Study: Its 
Extracted Software Architecture." 555-563, Proceedings of the list 
International Conference on Software Engineering (ICSE '99), Los 
Angeles CA, May 16-22, 1999. New York: ACM Press Books, 1999. 

Clements, P., et al. A Framework for Software Product Line Practice - 
Version 2.0 [online]. Pittsburgh, PA: Software Engineering Institute, 
Carnegie Mellon University, July 1999. Available WWW: 
<URL: http ://w ww. sei .emu .edu/plp/frame work.htmlx 

Comella-Dorda, S.; Wallnau, K.; Seacord, R.C.; & Robert, J. A Survey 
of Legacy System Modernization Approaches (CMU/SEI-2000-TN- 
003). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon 
University, April 2000. Available WWW: <URL: 
http ://www. sei .emu .edu/publications/documents/ 
O0.reports/00tn003 .html>. 

Harris 95 Harris, D.R.; Reubenstein, H.B.; & Yeh, A.S. "Reverse Engineering to 
the Architectural Level." 186-195,17th International Conference on 
Software Engineering, Seattle, WA, April 23-30, 1995. New York: 
ACM Press Books, 1995. 

CMU/SEI-2000-TN-008 19 



Kazman 99 

Muller 00 

Murphy 95 

Tilley 98 

Woods 99 

Kazman, R. & Carriere, S. J. "Playing Detective: Reconstructing 
Software Architecture from Available Evidence." Automated Sofiware 
Engineering 6, 2 (April 1999): 107-138 

Müller, Hausi; Jahnke, Jens; Smith, Dennis; Storey, Margaret-Anne; 
Tilley, Scott; & Wong, Kenny. "Reverse Engineering: A Roadmap." 
Future of Sofiware Engineering. New York: ACM Press Books, 2000. 

Murphy, G.C.; Notkin, D.; & Sullivan, K. "Software Reflexion 
Models: Bridging the Gap between Source and High-Level Models." 
SIGSOFTSoftware Engineering Notes 20, 4 (October 1995): 18-28. 

Tilley, S.R. A Reverse-Engineering Environment Framework 
(CMU/SEI-98-TR-005, ADA343688). Pittsburgh PA: Software 
Engineering Institute, Carnegie Mellon University, 1998. Available 
WWW: <URL: http://www.sei.cmu.edu/publications/documents/ 
98.reports/98tr005/98tr005title.htm>. 

Woods, S.; Carriere, S.J.; & Kazman, R. "A Semantic Foundation for 
Architectural Reengineering and Interchange." 391-398, Proceedings 
of the International Conference on Software Maintenance (ICSM-99). 
Oxford, England, August 30-September 3, 1999. Los Alamitos, CA: 
IEEE Computer Society, 1999. 

20 CMU/SEI-2000-TN-008 



Appendix: Definition of Key Concepts 

We derive our definitions of the key concepts of software product lines and software 

architectures from the ongoing work of the SEI Software Product Line Systems Program. 

Clements defines a software product line as a set of software-intensive systems sharing a 
common, managed set of features that satisfy the specific needs of a particular market 
segment or mission [Clements 99]. Substantial economies can be achieved when the systems 
in a software product line are developed from a common set of core assets, in contrast to 
being developed one at a time in separate efforts. Using common assets, a new product is 
formed by taking applicable components from the asset base, tailoring them as necessary 
through pre-planned variation mechanisms such as parameterization, adding any new 
components that may be necessary, and assembling the collection under the umbrella of a 
common, product line-wide architecture. Building a new product (system) becomes more a 
matter of generation than creation; the predominant activity is integration rather than 
programming. 

Software architecture forms the backbone for building successful software-intensive systems. 
A system's quality attributes are largely permitted or precluded by its architecture. 
Architecture represents a capitalized investment, an abstract reusable model that can be 
transferred from one system to the next. Software architecture forms one of the key reusable 
assets that form the basis of a software product line. Different products in the product line 
usually share the same architecture, or are built using prescribed variations of a common 
architecture. Bass defines a software architecture as the structure or structures of the system, 
which comprise software components, the externally visible properties of those components, 
and the relationships among them [Bass 97]. 

CMU/SEI-2000-TN-008 21 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

AGENCY USE ONLY (LEAVE BLANK) REPORT DATE 

May 2000 

REPORT TYPE AND DATES 
COVERED 

Final 
TITLE AND SUBTITLE 

Mining Existing Assets for Software Product Lines 

5.        FUNDING NUMBERS 

C —F19628-95-C-0003 

AUTHOR(S) 

John Bergey, Liam O'Brien, Dennis Smith 

7.        PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8.        PERFORMING ORGANIZATION 

REPORT NUMBER 

CMU/SEI-2000-TN-008 

9.        SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

HQ ESC/DIB 
5 Eglin Street 
Hanscom AFB, MA 01731 -2116 

10.      SPONSORING/MONITORING 

AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12.A   DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

12.B   DISTRIBUTION CODE 

13.      ABSTRACT (MAXIMUM 200 WORDS) 

Mining of existing assets offers an organization the potential to leverage all, or part, of its cumulative system 
investments, and thus represents a critical practice area in implementing a software product line. However, there 
are significant risks in achieving success because of the poorly documented and maintained state of many 
existing systems and the fact that many systems were initially developed for different paradigms than current 
distributed, Web-oriented, object-oriented approaches. 

Four basic steps are required to successfully mine assets: 1) preliminary information gathering, 2) making 
decisions on whether to mine assets and which type of overall strategy to use, 3) obtaining detailed technical 
understanding of existing software assets, and 4) rehabilitation of assets. 

This note outlines basic considerations for each of these steps. It outlines typical information to collect before an 
analysis. It then outlines a model for making decisions on mining legacy assets, and discusses the technical 
understanding of assets and the rehabilitation of assets. 

Because of its importance as a strategy for product lines, architecture reconstruction is discussed, as it is 
supported by an automated tool set known as the Dali workbench. 

14.      SUBJECT TERMS 

product lines, mining software assets, architecture reconstruction, reverse 
engineering 

15. NUMBER OF PAGES 

21 PP. 

16.    PRICE CODE 

17. SECURITY CLASSIFICATION 

OF REPORT 

UNCLASSIFIED 

18.      SECURITY CLASSIFICATION 

OF THIS PAGE 

UNCLASSIFIED 

19.      SECURITY CLASSIFICATION 

OF ABSTRACT 

UNCLASSIFIED 

20.      LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 


